Vektor Matematika

Share
Comment 1 reply
Vektor Matematika

Vektor matematika adalah suatu besaran yang memiliki arah, vektor ini sendiri dapat digambarkan dengan memakai panah yang arahnya akan menunjukkan pada arah vektor. Serta panjang garisnya biasa disebut sebagai besar vektor.

Jika vektor dimulai dari titik A serta berakhir di titik B, maka vektor tersebut dapat ditulis dengan menggunakan sebuah huruf kecil yang di atasnya terdapat sebuah tanda garis atau tanda panah (simbol

 atau \vec{v}). Atau juga dapat dengan cara seperti pada gambar di bawah ini:

simbol vektor

Sebagai contoh, vektor simbol adalah vektor yang berawal dari titik A(x1 . y1) menuju ke titik B(x2 . y2) dapat kita lukiskan koordinat cartesius di bawah.

Panjang garis sejajar sumbu x merupakan v1 =  x2 – x1 serta panjang garis sejajar sumbu y merupakan v2 =  y2 – y1 adalah beberapa komponen vektor \bar{v}.

contoh soal vektor matematika dan penyelesaiannya

Komponen vektor \bar{v} bisa kita tuliskan guna menyatakan vektor secara aljabar yakni:

materi vektor matematika kelas 10 pdf

Jenis Vektor

Terdapat beberapa jenis dari vektor khusus yang ada dalam matematika antara lain:

  • Vektor Posisi
    Sebuah vektor yang letak dari titik awalnya di titik 0 (0,0) serta titik ujungnya berada di A (a_1,a_2)
  • Vektor Nol
    Sebuah vektor yang di mana panjangnya nol serta dinotasikan dengan \bar{0}. Vektor nol tidak mempunyai arah vektor yang jelas.
  • Vektor satuan
    Suatu vektor yang memiliki panjangnya satu satuan. Vektor satuan dari jenis vektoryaitu:
    yaitu
  • Vektor basis
    Vektor basis adalah suatu vektor satuan yang saling tegak lurus. Dalam vektor ruang dua dimensi (R2) memiliki dua vektor basis yakni 11dan 12. Sementara dalam tiga dimensi (R3)mempunyai tiga vektor basis yakni 13, 14, dan juga 15.

Macam Macam sekaligus Operasi Vektor

Vektor matematika tak hanya terdiri dari beberapa jenis saja, namun vektor matematika juga terdiri dari beberapa macam.

Nah beriktu akan kami berikan macam-macam vektor beserta dengan operasinya sekaligus, simak baik-baik ya:

Vektor di R2 

Panjang dari suatu segmen garis yang menyebutkan vektor dilambangkan dengan memakai simbol atau dapat juga dinotasikan dengan menggunakan simbol |simbol|

Berikut ini panjang dari vektor yaitu seperti berikut ini:

panjang dari vektor

Panjang vektor sendiri adalah bentuk yang bisa dihubungkan dengan sudut ∅  yang dapat dengan mudah untuk dibentuk oleh vektor serta juga sumbu positif.

vektor sumbu positif

Operasi Vektor di  R2 

⇒ Proses penjumlahan dan juga Pengurangan Vektor di R2 

Resultan adalah sebutan dari hasil penjumlahan yang dilakukan pada dua vektor atau pun lebih.

Penjumlahan pada vektor ini sendiri juga dapat dilakukan secara aljabar serta juga dapat dilakukan dengan memakai cara menjumlahkan komponen yang berada di posisi sama atau seletak.

Apabila:

materi vektor matematika pdf

maka :

pengertian vektor matematika

Maka penjumlahan secara grafis sendiri dapat kita lihat pada contoh gambar yang ada di bawah ini:

Penjumlahan Vektor Secara Grafis

Pada pengurangan vektor ini diberlakukan sama dengan yang ada pada penjumlahan, antara lain adalah sebagai berikut, lihat pada contoh di bawah ini:

operasi vektor matematika

Sifat -sifat di dalam penjumlahan vektor ini sendiri adalah seperti di bawah ini, silahkan disimak rumusnya:

⇒ Perkalian Vektor di RDengan Skalar 

Suatu vektor sendiri juga dapat dikalikan dengan suatu skalar atau bilangan real yangnantinya akan menghasilkan suatu vektor baru jika simbol adalah vektor dan k merupakan skalar.

Sehingga perkalian vektor dapat dinotasikan menjadi seperti di bawah ini:

skalar

Berikut ini merupakan beberapa keterangan selengkapnya:

  • Apabila k > 0, maka vektor skalarakan searah dengan vektor simbol.
  • Apabila k < 0, maka vektor skalarakan berlawanan arah dengan vektor simbol.
  • Apabila k = 0, maka vektor skalarmerupakan vektor identitas vektor identitas.

Jika secara grafis perkalian ini dapat mengubah panjang vektor serta dapat dilihat pada tabel yang terletak di bawah ini:

Perkalian Vektor matematika Secara Grafis

Jika secara aljabar, perkalian vektor simbol dengan skalar k dapat kita rumukan dengan memakai rumus seperti yang ada di bawah ini:

rumus

⇒ Perkalian Skalar Dua Vektor di R2 

Dalam perkalian skalar dua vektor bisa juga disebut sebagai hasil kali titik dua vektor yang dapat kita tuliskan seperti yang ada di bawah ini:

Perkalian Skalar

Vektor di R3

Vektor yang terelta di dalam ruang tiga dimensi (x, y, z) di mana jarak antara dua titik vektor dalam R3 bisa kalian ketahui dengan pengembangan rumus phytagoras.

Apabila titik dari A(x2. y2. z2) serta B(x2. y2. z2) adalah:

ruang tiga

Atau apabila v1, sehingga:

r 3

Vektor simbol vektor bisa disebutkan dalam dua bentuk, yakni dalam kolom

ab atau dalam baris menjadi ab baris

Vektor juga bisa disajikan sebagai kombinasi linier dari vektor basis seperti 1 atau 2 dan atau 3

berikut selengkapnya:

Vektor Matematika Kombinasi Linier

Operasi Vektor di R3

Operasi vektor di R3 secara umum, mempunyai konsep yang sama dengan operasi yang ada di vektor R2 dalam penjumlahan, pengurangan, hingga perkalian.

Penjumlahan dan pengurangan vektor di R3

Penjumlahan dan juga pengurangan vektor di R3 sama dengan yang ada di vektor R2 yakni:

Penjumlahan dan Pengurangan Vektor Matematika di R3

Perkalian vektor di R3 dengan skalar

Apabila simbol merupakan vektor dan k merupakan skalar. Maka perkalian vektor menjadi:

perkalian

Hasil kali skalar dua vektor

Selain rumus pada R3, terdapat rumus lain dalam hasil kali skalar dua vektor. Apabila 4 dan 5 maka 6 adalah:

7

Proyeksi Orthogonal vektor

Apabila vektor ā diproyeksikan menjadi vektor barb serta diberi nama c seperti gambar di bawah ini:

Proyeksi Orthogonal vektor matematika

Diketahui:

diket

 

 

Sehingga:

sehingga

Untuk memperoleh vektornya:

vektornya

Notasi Vektor

Seperti yang telah dijelaskan di atas, vektor disini dinyatakan dengan menggunakan huruf yang diberi arah garis di atasnya.

Vektor bisa dinyatakan dalam dua dimensi bahkan tiga dimensi atau lebih. Apabila dinyatakan dalan tiga dimensi maka vektor mempunyai vektor satuan yang dinyatakan dalam i, j, dan k.

Vektor satuan merupakan vektor yang besarnya satu satuan serta arahnya sesuai dengan sumbu utama, yaitu:

i merupakan vektor satuan yang searah sumbu x (absis)

j merupakan vektor satuan yang searah sumbu y (ordinat)

k merupakan vektor satuan yang searah sumbu z (aplikat)

Notasi Vektor Matematika

dengan a_x sebagai komponen arah sumbu x, dan a_y komponen arah sumbu y dan a_z merupakan komponen arah sumbu z.

Bentuk tulisan vektor:

perkalian vektor matematika

dalam matematika lebih sering dituliskan ke dalam bentuk:

dalam matematika lebih sering dituliskan dalam

dengan komponen dalam bentuk indeks angka menjadi:

bentuk indeks angka

Panjang dari vektor (besar,nilai) dituliskan seperti tanda mutlak yang ada pada aljabar

Panjang vektor (besar,nilai) dituliskan seperti tanda mutlak dalam aljabar

Atau dalam indeks angka

angka

Jika vektor ditentukan oleh koordinat

vektor koordinat

Maka vektor AB dinyatakan dengan

vektor ab

Panjang vektor AB

Panjang vektor AB

Sementara untuk vektor satuan dari suatu vektor yang dinyatakan sebagai

vektor satuan

Dinyatakan dengan

final

Contoh Soal dan Pembahasan

Soal 1.

Jika diketahui terdapat sebuah titik A(2,4,6), titik B(6,6,2), serta titik C(p,q,-6). Apabila titik A, B serta titik C ini letaknya segaris, carilah berapa nilai dari p + q tersebut!

Jawab:

Jika titik titik A, B dan C ini berada segaris maka vektor simbol vektor serta vektor acini juga dapat searah maupun berlainan arah.

Sehingga akan terdapat bilangan m yang merupakan sebuah kelipatan serta bisa membentuk persamannya seperti yang ada di bawah ini:

  • m.simbol vektor = ac

Apabila B terletak di antara titik A dan C maka akan didapatkan seperti yang ada bawah ini:

bc

Sehingga akan dapat diperoleh:

jawab1

Sehingga dapat ditentukan kelipatan m dalam persamaan:

persamaan

Maka hasil yang akan kita dapatkan yaitu:

hasil

Sehingga bisa kita tarik kesimpulan seperti yang ada di bawah ini:

p + q = 10 + 14 = 24

Soal 2.

Apabila diketahui vektor di titik A dan titik B dan vektor pada titik C yang terletak diantara garis Ab seperti yang ada pada gambar di bawah. Tentukan persamaan dari vektor C.

soal 2

Jawab:

Dari gambar di atas bisa kita ketahui jika:

diket 2

Sehingga:

jawab soal 3

Demikianlah ulasan singkat mengenai vektor matematika yang dapat kami sampaikan. Semoga ulasan di atas mengenai vektor matematika dapat kalian jadikan sebagai bahan belajar kalian.

Artikel Lainnya
Mungkin kamu juga suka artikel ini.